Newton's 2nd Law of Motion and Weight SPH4C

If the net force on an object is not zero, the object will be	in the
of the:	
i.e. the more massive the object, theit is to change its motion	
(the higher its).	
This equation can be rearranged:	
The formula $F = ma$ can also be used to calculate the weight of an object,	
the magnitude of the force of acting on it, if the acceleration a is the	е
<u></u> :	
NA/airlet in the reference and recording	
Weight is therefore measured in	
Example: What is the weight of a 140 kg person?	

More Practice

The **weight** of an object $F_g = mg$ where g is the magnitude of the acceleration due to gravity. Calculate the weight of the objects of given mass below.

(a) oxygen gas molecule: 5.356 x 10⁻²⁶ kg

(b) penny: 0.00235 kg

(c) tennis ball: 0.057 kg

(d) Ms. Rosebery: 61 kg

(e) newborn elephant: 105 kg

